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The method of the inverse problem of scattering theory is used to analyze processes of 
radiation propagation and mass transfer in optical guiding systems. 

In investigations of fiber-optic communication lines and elements of integral optics, 
much attention is paid to problems of the synthesis of these devices, having several aspects 
for consideration. First, one must establish the law of distribution of the main character- 
istics, such as the permittivity s and the magnetic permeability ~ of the synthesized optical 
devices, determining their optical transmission characteristics. Second, one must develop 
the optimum regimes for the processes of formation of the assigned distributions of e and 
in these devices. 

If diffusional waveguides are investigated, in particular, then the successive formulation 
and analysis of two types of inverse problems are required: electrodynamic and heat- and 
mass-exchange problems. ~ The first come down to inverse spectral problems of quantum mechanics 
for the Schrodinger equation [i, 2], withwhich the nonuniform distributions of the permittivity and 
permeability of the waveguide are reconstructed from the spectral characteristics. In the 
second formulation, the technological process of nonuniform distribution of the permittivity 
e and permeability ~ obtained in the solution of the first problem is modeled using the non- 
steady diffusion equation describing the variation of the concentration u(x, t) of the ad- 
mixture. The present article is devoted to an investigation of the laws connecting the 
diffusional processes of synthesis of waveguides with their optical properties. 

Wave propagation in guiding systems, such as plane stratified media and optical waveguides, 
is described by scalar wave equations derived from the Maxwell equations. The transverse com- 
ponent of the electric field of a light wave propagating along the z axis of a regular waveguide 
can be represented as 

E (x, z, t ) =  F(k, x, O)exp [--ik(sin O z -  tic)], (i) 

where k = m/c is the wave number of free propagation; ~ is the frequency; c is the speed of 
light. In this case with D = i the wave equation is converted into a one-dimensional equation, 

(d~/dx ~) F (k, O, x) + k ~ [8 (x) - -  sin ~ O] F (k, O, x) = O, (2) 

which, both for a fixed k and for a fixed angle of inclination to the axis of the waveguide 
(8' = 90 - 8), is reduced to the Schrodinger equation 

--(d~/dx ~) F ([~, x) + V (x) F (~, x) = EF (~, x), (3) 

where 8 = k cos 8 and E = 8z. 

In the first case, when the values of 0 are varied and k = const, V(x) = [I - c(x)]k 2. 
In the second case, with variable values of k and 8 = const, (2) is converted into (3) 

through a Liouville transformations: using the substitutions d-~dx = ~(x), q(x) = [g(x)--sin~0] la, 

and V(~) = q-~ O~q and the change of the variable x to ~. 

The asymptotic behavior of the function F(~, x) is determined by the relations 
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lira F ([~, x) = exp (-- i~x) -q- R (k, 0) exp (i~x) (4)  
X ~ e =  

for mod ~ of the continuous spectrum [R(k, 0) is the reflection coefficient] and 

lira F (~n, x) -- Mn exp (--  ~nx) ( 4 ' )  

for mod Bn of the discrete spectrum, where M 2 are normalization constants: 
n 

- [.! x)d ] . 
0 

In the direct problem of the quantum theory of scattering, the assignment of V(x) deter- 
mines the solution F(~, x) and the scattering characteristics R(~) and {~n, Mn}" In the 
inverse problem V(x) and the solution are reconstructed from the scattering characteristics. 
The basic equations of the inverse scattering problem are the Gel'fand-Levitan and Marchenko 
equations, 

K(x, x')+Q(x, x ' )+iK(x ,  y)Q(v, x')dv=o. (5) 
x 

/~L(x, X') +QSL(x, x') + .I KSL(x" V) Qs~(V, x') av =0. (5')  
0 

They are solved uniquely for K(x, y) or KGL(x, y). Serving as the initial data for the 
solutions of (5) and (5') are scattering data or the s~ectral characteristics, determining 
the kernel Q(x, y) of the Marchenko equation (5) and Q~L(x, y) of the Gel'fand-Levitan 
equation (5'): 

Q(x, y) 1 R(~) exp i ~ ( x + y )  d ~ + ~  2 = .  - Mnexp [ - - ~ ( x  + y)], (6)  

N 

0 n = l  

The functions K, in turn, are connected with the distribution V(x) being sought in a simple 
relation 

V(x) = V ( x ) - -  2 d K(x, x) (7)  
dx 

and by Jost's solutions* of Eq. (3), determined by the conditions 

lira f• (13, x) = exp (___ i~x), 
X ~  00 

f_+ (~, x) -- exp (__ i~x) + i K (x, x') exp (4- if3x') dx', 
x 

*Regular solutions ~(~, x), satisfying the boundary conditions ~ (13, x= 0) = $(8, x= 0) = 0 
and ~'(6, x=0)=$'(8, x=0)=1 , are determined by the relation 

x 

~p (~, x)=;( l~,  x) -I- !/~L( x, x')~(~, x')dx'; 
5 

0 

and 0(6) is the spectral measure (see [5]). 

(8) 

(8') 
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from which, in accordance with the condition (4), the physical solution can be written at 
once: 

p ([< x) = / _  (~, x) + ,~ (8):+ (~, x), 

F (13 .... x) : m,, :+ (i~,,, x). ( 9 )  

The limits of integration in (5), (5'), (8), and (8') and the means of assigning the 
spectral information depend on the formalism used for the inverse problem. Equations (5)-(9) 
are written by the Marchenko method and can be used in the analysis of regular cylindrical 
waveguides or plane inhomogeneous media at x > 0 if s(x) = i and p(x) = i at x ! 0. 

For a plane waveguide it is convenient to use the inverse problem over the entire axis 
-~ < x < ~ [3], a peculiarity of which consists in the fact that two equations must be 
analyzed instead of the one Marchenko equation (5). However, by virtue of the fact that 
V(x) is expressed both through the kernel Kl(x, y) of one integral equation and through the 
kernel K2(x, y) of the other, it is sufficient to find one of the K(x, y) from an equation 
coinciding with (5). 

If one is investigating a situation when not only g(x) ~ i but also B(x) ~ i, then 
instead of (2) one must consider the equation 

d2 ~ ( k ,  O, x ) - l - k  2 [e (x) ~ (x) - sin ~O]o(k ,  O, x ) : =  d l n ~ ( x )  d ~ ( k ,  O, x), 
dx----T-, dx dx 

which is again reduced to (3) using a Liouville transformations. Now, however, twice as much 
spectral information is needed to determine ~(x) and p(x): for two angles 0 and all k [4]. 

In a number of cases, when R(~) is a fractional-rati0nal function of !3 or reflection is 
altogether absent, R(~) = 0 (see, e.g., [5]), the spectral kernel Q(x, y) can be factored 

M 

[written in the form of a finite sum of products ~n(x)z~(y) ] and the integral equation 
n=l 

(5) changes into an algebraic system of a finite number of equations for K(x, y). As a 
result, we can find V(x) and hence E(x) and the solution, in explicit form using Eqs. (7)-(9). 
We use the technique of degenerate kernels to obtain the permittivity profile of the guiding 
systems providing the assigned multimode regime of propagation of the electric field of the 
light wave [6]. Let R($) = 0, which corresponds to the nonreflective case of the problem 
over the entire axis. Then only the contribution from states of the discrete spectrum 
remains in Q(x, y): 

N 
Q (x, y) = M .  : (il~., x) f @ , .  u) = 

n ~ ( x )  = 1 

N 

= ~ M~ exp [-- [~,~ (x -l- Y)I- 
n 

Similarly, for K(x, y) we have 

N 

n 

N 

: - - ~  M~ f ( i ~ ,  x) exp ( - - ~ ,  y). 
o 8(x) =I n 

(lO) 

(11) 

For f(i$ n, x) we obtain from (5) the system of algebraic equations 

N 

with the matrix of coefficients Pnj(X) 

o M 2 , 2 ~ exp [-- ([~,~ -+- [3i) x] p . j  (x) = a~j + ! : (il~, x ) M~ f (il3j, x') dx' = a . j +  

(12) 

(13) 
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Using (ii), (7) and (8), we obtain 

o d ~ 
V (x) - -  V (x) = k ~ (~ (x) - -  ~ (x)] = - - 2  dXg 

In Det I IP~  (x)I[. (14) 

In this case the solution of Eq. (3) is written in closed form, 

f(~, ~ ) :  [(~, ~)+ ~ ~(~,  ~)M~p-~(~)]~j [(~, ~')[(~, ~')dx,, ( is)  
n ,  ] X 

O O 

w h e r e  f ( B ,  x )  = e x p ( i B x )  f o r  ~ ( x )  = 1 ,  w h i l e  i n  t h e  g e n e r a l  c a s e  i t  i s  a f u n c t i o n  t h a t  i s  a 
s o l u t i o n  o f  ( 3 )  w i t h  a c e r t a i n  e ( x )  known i n  a d v a n c e  [ 7 ] .  I n  t h e  p a r t i c u l a r  c a s e  o f  o n e  
mode w i t h  t h e  p a r a m e t e r s  Bz and  M~, t h e  p e r m i t t i v i t y  i s  

2 ~  (16) ~(x) = 1 + ~c~2~(X--Xo)' 

where x0 = (2~z)-lln(2~i/M]). We write the corresponding solution of Eq. (3): 

~t exp [ - -  ~1 ( x - -  Xo)] ] (17) 
[ (8, x) = exp(i~x) 1 + ( ~ - - i ~ ) c h [ ~  (X--Xo)]J " 

In an analysis of cylindrical waveguides or plane media for which ~(x) = p(x) ~ i at 
x < 0, in Q(x, t) of (6) one must take into account, besides the sum over states of the dis- 
crete spectrum, an integral term, which can bereplaced by a sum of residues at points of 
bound states. We shall not dwell on the investigtion of this case here. We only note 
that it would be more convenient to use the Gel'fand-Levitan method [5], since p(g) = $(B) 
and the integral part of QGL(x, y) of (6') makes no contribution. 

Let us consider a more complicated situation, generalizing the preceding ones, when 
along with the directional modes of the discrete spectrum there are also emission modes. 
The scattering function S(~) remains fractional-rational in this case, however: 

] 
We find Q(x, y) from Eq. (6) with R(~) = 1 - S(~). C!osing the integration contour in the 
upper half-plane $, using the residue theorem we obtain 

N ( 1 9 )  
Q (x, v) = ~ & ~xp [- d~ (x+ v)l 

P 

Tl:e c o n t r i b u t i o n s  f r o m  b o t h  t h e  bound  states (dp = iBp ,  Re Bp = 0)  and  o t h e r  b a n d s  S(B)  a t  

t h e  p o i n t s  dp = ap  a r e  now c o m b i n e d  i n  t h i s  e x p r e s s i o n .  I n  t h e  g e n e r a l  c a s e  ap  a r e  c o m p l e x  
and  a r e  d i s t r i b u t e d  s y m m e t r i c a l l y  w i t h  r e s p e c t  t o  t h e  i m a g i n a r y  a x i s .  T h e s e  b a n d s  c a n  
c o r r e s p o n d  t o  " r e s o n a n c e "  modes  - w e a k l y  damped modes  o f  t h e  c o n t i n u o u s  s p e c t r u m .  

Thus, 

A v =  2Op(~4-a,) ( ~ , + a . ) ( ~ , + ~ . )  +M~ for p = l  ..... X b, 

Ap -= 2a~(Fp '--. ap) f i  (an 4- ap)(~n-F- ap) for  p ~ N b @ 1 . . . .  N. 

Substituting Q in the form (19) into the Marchenko equation (5), we obtain 

N 

/ f  (x, g)=--~--2 Aj/(idj, x) exp ( - - d j j ) .  
i 

(20) 
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The relations (14) and (15) remain valid for the potential and the solutions if M 2 is re- 
placed by A n and Phi are determined not from (13) but from n 

(21) 

By varying the normalization of the bound states Mp,2 we obtain Nb, a parametric family 

of phase-equivalent media. If M 2 = -iRes R(~) for ~ = i~p, then all Ap = 0 for p = 1 ..... 
P 

N b and only the sum over (N - N b) states remains in Eqs. (20), (19), etc. The g(x) and 

f(~, x) obtained for such M 2 can be used as reference values for determining the E(x) and 
P 

f($, x) corresponding to the arbitrary normalizations of M 2. This way of reconstructing E(x) 
P 

sometimes proves more convenient than the preceding one, since it operates with systems of 
algebraic equations of lower order. So, we can write the distribution g(x) [and hence 
n(x) also, since c(x) = n=(x)] and the corresponding solutions for the given regime of 
operation of the light guide in exp!ici~ form. 

Inverse Problem for the Diffusion Equation 
Modeling the Process of Formation of a Fiber 

Now let us consider the mathematical model for the technological process of creation of 
the permittivity distribution e(x) found above (14) of a light guide for multimode or one- 
mode light propagation. To describe the diffusion process we use the system of equations 
and boundary conditions 

Ou(x, t) 0 [D(x) O~(x, 0 ] 
Ot = 0--'--~ Ox ' (22 )  

o 

u (x, T )=  const A8 (x) = const [s (x) - -  s (x)], (23)  

a'(O, t) =0, u(a, l)---- 0, (24)  

where a is an arbitrary fixed value of x and, in general, a ~ ~. 

The condition (23) is written under the assumption that for a low concentration of diffu- 
sant molecules u(x, t) ~ AE(x, t). This condition requires that the concentration distribu- 
tion u(x, t) of the admixture by the time t = T leads to the As(x) assigned above (14) as a 
result of the diffusion process. The boundary condition (24) formulates the requirement 
of symmetry of the distribution of the admixture. 

We first consider the case when D(x) is a certain known function. We represent the un- 
known concentration distribution of the admixture in the form of an expansion in a complete 
system of orthonormal functions X(Pm, x), 

u(x,  t) = ~ ~m exp [--p%(t-- r ) ] z  (p~, x)--  ~.Am(t)x(pm, x), (25 )  
m m 

where the coefficients of the expansion are 

2 A,~ (t) -- qo,n exp [ - -  p% (t - -  T)] _--_ Am (T) exp [- -  p,~ (t - -  T)], 0 ~ t ~ T, (26) 

since Am(T) = ~m, as is easy to see from (25). The coefficients ~m are determined, in turn, 
from the relation 

~ = J dx Ae (x) Z (P~, x)dx, (27)  
0 

following from (25) with t = T, (23), and the orthogonality of the functions X(Pm, x). After 
substituting (25) into (22)-(24) we arrive at the classic Sturm--Liouville problem for the 
functions X(Pm, x), 

d~ ~ z (pro, x) = - p ~  z (pro, ~); ( 2 s )  
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z ' (P, . ,  0 ) =  0, x (P=, a ) =  0. (29) 

F i n d i n g  t h e  s p e c t r u m  o f  e i g e n v a l u e s  and e i g e n f u n c t i o n s  o f  X f o r  t h e  p rob lem ( 2 8 ) ,  ( 2 9 ) ,  
h a v i n g  s o l v e d  t h e  d i r e c t  p r o b l e m ,  f rom Eq. (27)  we o b t a i n  ~m' w h i l e  we a l s o  d e t e r m i n e  u ( x ,  t )  
a t  any  t i m e  t u s i n g  ( 2 5 ) .  The v a l u e  u ( x  = 0,  t = 0) i s  t h e  c o n c e n t r a t i o n  o f  t h e  a d m i x t u r e  
which must be assigned at the initial time t and at the point x = 0 in order to obtain the 
distribution Ae(x) assigned by (16) or (14) by the time t = T for the known function D(x). 
And this will be the boundary condition for control of the diffusion process. 

Now we consider the situation when the diffusion function D(x) is not known in advance, 
but either u(x = 0, t) or its derivative is measured experimentally at any time t. Then one 
can formulate the inverse problem of determining the functions D(x) and solutions u(x, t) of 
the diffusion equation (22). The fundamental possibility of solving such a problem for Eq. 
(22) with a piecewise-constant function D(x) and the initial condition u(x, t:= 0) = 0 was 
shown by A. M. Denisov [8]. Let u'(0, t) be known. We shall investigate the problem (22), 
(23), (24) with the boundary conditions 

u(O, t ) = o ,  (30) 

u (a, t) + BDa Ou (x, t) t Ox = F (l). (31) 
X ~ a  

We note that we can alter the formulation when necessary, taking u'(O, t) = 0 or inter- 
changing the conditions at zero and at the point a. Using a generalized Laplace transformation, 
we represent u(x, t) in the form 

u(x, t)= i cp(p) x(p, x) exp [ ' p i ( t - -  T)]dp. (32)  
0 

Att=T 

u(x, T)=cons[ A~(x) = .i q~(P)Z(P, x)dp= i dpr x). 
0 0 

( 3 3 )  

We write the equation and boundary conditions for ~(p, x), using (22), (30), (31), and 
an inverse Laplace transformation: 

d D(x) (p, x) __p2,(p, x), (34)  
dx dx 

~P (P)[==o - o, 

[ " ] (p, x) + BD~ -~x * (p' x) = F (P). 
X=Cl 

We i n t r o d u c e  t h e  a u x i l i a r y  s o l u t i o n s  o f  (34)  w i t h  t h e  b o u n d a r y  c o n d i t i o n s  

(35)  

(36) 

(p, x = 0 ) , =  0, ( 3 7 )  

m' (p, x = 0) = 1. (38)  

The functions ~ and m, being solutions of the same equation (34) and having one common 
boundary condition (35), (37), differ from each other only in the normalization constant, 
in this case ~'(p, x = 0). With allowance for this, we rewrite the boundary condition (36): 

~' (p. x = O) [~ (p, x) d ] ~ ~o (p, x) = p, (p). (39) ~- BD~ dx .:~ 

Since we take u'(0, t) as known at each time t, ~'(p, x = 0) is also known. 
the poles ~'(p, x = 0), as is easly seen from (39), yield 

(Pro, a) + BDa d I ~ (p.,, x) = O. 
dx ~=a 

The points of 

(4o) 
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It is obvious that the ordinary "direct" Sturm--Liouviile problem is a solution of Eq. (34) 
with the boundary conditions (37) and (40) and a known D(x). And the determination of 
D(x) of Eq. (3) with the boundary conditions (37) and (40) from the levels {Pm} and their 
normalizations {C 2} is an inverse Sturm-Liouville problem, to which the problem (34)-(36) 

m 
was reduced. The Pm are found from the known ~ (p, x = 0). The normalization constants 
{C~} are determined by the condition (38), from which it follows that all C 2m = I. As is 

well known, the inverse S~urm--Liouville problem has a unique solution when the potential 
functions is reconstructed from a complete set of eigenvalues and their normalization 
constants or from two sets os eigenvalues (see, e.g., [9]). 

Now we carry out a Liouville transformation using the substitution 

and convert from Eq. 

dx = "V~(x) = q (x) 
d~ 

(34) to the Schrodinger equation (3) for the new variable ~ with 

(41) 

V (O = q- i  d~q (~) 
d~ ~ 

(42) 

Using the equations of the inverse problem given at the beginning, we obtain 

(43) 

where the integral term is absent from Q(a, $) of (6'), and instead of Jost's solutions of 
Eq. (3) we now use auxiliary regular solutions of the type (8') determined by the boundary 
conditions (35 ) and (38) (see [i, 5]). 

Sunning up, we note that inverse spectral problems can be used extensively in problems 
of both electrodynamics and heat and mass exchange. In the present work we systematically 
analyzed two inverse problems in application to the formation of optical devices with 
assigned transmission characteristics. 
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